Strongly CS-Rickart and dual strongly CS-Rickart objects in abelian categories

نویسندگان

چکیده

We introduce (dual) strongly relative CS-Rickart objects in abelian categories, as common generalizations of Rickart and extending (lifting) objects. gi...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-dual Rickart modules

We introduce the notions of T-dual Rickart and strongly T-dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (resp. finitely generated free) $R$-module is T-dual Rickart if and only if $overline{Z}^2(R)$ is a  direct summand of $R$ and End$(overline{Z}^2(R))$ is a semisimple (resp. regular) ring. It is sho...

متن کامل

Gorenstein projective objects in Abelian categories

Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...

متن کامل

Strongly copure projective objects in triangulated categories

In this paper, we introduce and investigate the notions of ξ-strongly copure projective objects in a triangulated category. This extends Asadollahi’s notion of ξ-Gorenstein projective objects. Then we study the ξ-strongly copure projective dimension and investigate the existence of ξ-strongly copure projective precover.

متن کامل

t-dual rickart modules

we introduce the notions of t-dual rickart and strongly t-dual rickart modules. we provide several characterizations and investigate properties of each of these concepts. it is shown that every free (resp. finitely generated free) $r$-module is t-dual rickart if and only if $overline{z}^2(r)$ is a  direct summand of $r$ and end$(overline{z}^2(r))$ is a semisimple (resp. regular) ring. it is sho...

متن کامل

Minus Partial Order in Rickart Rings

The minus partial order is already known for complex matrices and bounded linear operators on Hilbert spaces. We extend this notion to Rickart rings, and thus we generalize some well-known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2021

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2021.1976201